
© Bennett, McRobb and Farmer 2005 1

Avoiding the Problems

Based on Chapter 3 of Bennett, McRobb and
Farmer:
Object Oriented Systems Analysis and Design
Using UML, (3rd Edition), McGraw Hill, 2005.

© Bennett, McRobb and Farmer 2005 2

In This Lecture You Will Learn:

 the stages in the waterfall life cycle;
 about prototyping and incremental life

cycles;
 the importance of project management;
 how users may be involved in a project;
 the role of CASE tools in systems

development.

© Bennett, McRobb and Farmer 2005 3

Problem Solving Model

 Main phases are
– Data gathering
– Problem redefinition

 These focus on understanding what the problem is about

– Finding ideas
 Concerned with understanding more about the nature of

the problem and possible solutions

– Finding solutions
– Implementation

© Bennett, McRobb and Farmer 2005 4

Problem Solving Model
Problem
definition

 Data
gathering

 Problem
redefinition

 Finding
ideas

Finding
solutions

Implementation

General problem solving model (adapted from Hicks, 1991).

© Bennett, McRobb and Farmer 2005 5

Project Life Cycles

 A distinction should be made between
– Systems development, which incorporates

human, software and hardware elements
– Software development, which is primarily

concerned with software systems

 Two important phases are
– Strategic Information Systems Planning
– Business Modelling

© Bennett, McRobb and Farmer 2005 6

Waterfall Life Cycle

 The traditional life cycle (TLC) for information
systems development is also known as the
waterfall life cycle model.
– So called because of the difficulty of returning to

an earlier phase.

 The model shown here is one of several more
or less equivalent alternatives.
– Typical deliverables are shown for each phase.

© Bennett, McRobb and Farmer 2005 7

Traditional Life Cycle
System System

Engineering Engineering

Design Design

Code

Construction

Testing

Maintenance Maintenance

Analysis Requirements
 Analy sis

Code Installation

© Bennett, McRobb and Farmer 2005 8

TLC Deliverables

 Systems Engineering
– High level architectural specification

 Requirements Analysis
– Requirements specification
– Functional specification
– Acceptance test specifications

Life cycle deliverables (adapted from Sommerville, 1992).

© Bennett, McRobb and Farmer 2005 9

TLC Deliverables

 Design
– Software architecture specification
– System test specification
– Design specification
– Sub-system test specification
– Unit test specification

Life cycle deliverables (adapted from Sommerville, 1992).

© Bennett, McRobb and Farmer 2005 10

TLC Deliverables

 Construction
– Program code

 Testing
– Unit test report
– Sub-system test report
– System test report
– Acceptance test report
– Completed system

Life cycle deliverables (adapted from Sommerville, 1992).

© Bennett, McRobb and Farmer 2005 11

TLC Deliverables

 Installation
– Installed system

 Maintenance
– Change requests
– Change request report

Life cycle deliverables (adapted from Sommerville, 1992).

© Bennett, McRobb and Farmer 2005 12

Problems with TLC

 Real projects rarely follow such a simple
sequential life cycle

 Lapsed time between systems engineering
and the final installation is long

 Iterations are almost inevitable in real
projects but are expensive & problematic with
the TLC

 Unresponsive to changes during project as
iteration is difficult

© Bennett, McRobb and Farmer 2005 13

TLC with Iteration
System

Engineering
System

Engineering

Design Design

Code

Construction

Testing

Maintenance Maintenance

Requirements
Analy sis

Code Installation

The cost of
this form of
iteration
increases as
the project
progresses
making it
impractical
and not
effective

© Bennett, McRobb and Farmer 2005 14

Strengths of TLC

 Tasks in phases may be assigned to
specialized teams.

 Project progress evaluated at the end of
each phase.

 Can be used to manage projects with
high levels of risks.

© Bennett, McRobb and Farmer 2005 15

Prototyping Life Cycle

Initial
analysis

Define
objectives

Specify

Construct Evaluate
Prototyping
completed

© Bennett, McRobb and Farmer 2005 16

Prototyping – Advantages:

 Early demonstrations of system functionality
help identify any misunderstandings between
developer and client

 Client requirements that have been missed
are identified

 Difficulties in the interface can be identified
 The feasibility and usefulness of the system

can be tested, even though, by its very
nature, the prototype is incomplete

© Bennett, McRobb and Farmer 2005 17

Prototyping – Problems:

 The client may perceive the prototype
as part of the final system

 The prototype may divert attention
from functional to solely interface issues

 Prototyping requires significant user
involvement

 Managing the prototyping life cycle
requires careful decision making

© Bennett, McRobb and Farmer 2005 18

Spiral Model & Incremental Development

Progress towards
final system

Develop first
increment

Develop next
increment

Risk analysis
based on initial

requirements
Planning Risk analysis

User evaluation Software development

Risk analysis
based on user

reaction to plan

Go, no-go decision
Risk assessment

User
evaluation

of
increments

Further planning
based on user

comments

Initial
requirements

gathering and
project planning

© Bennett, McRobb and Farmer 2005 19

Unified Software Development Process

 Captures many elements of best practice
 The phases are:

– Inception is concerned with determining the scope
and purpose of the project;

– Elaboration focuses requirements capture and
determining the structure of the system;

– Construction's main aim is to build the software
system;

– Transition deals with product installation and
rollout.

© Bennett, McRobb and Farmer 2005 20

Size of square
relative to time
spent on
workflows

Inception Elaboration Construction Transition

Project
Phases

1 2 3 4 5 6 7 8
Iterations within
each phaseRequirements

Analysis

Design

Implementation

Test

Workflows

© Bennett, McRobb and Farmer 2005 21

User Involvement

 User’s can be involved at various levels
– As part of the development team (DSDM)
– Via a consultative approach
– In fact gathering

© Bennett, McRobb and Farmer 2005 22

Agile Approaches

 Iterative lightweight approach
 Accepts that user requirements will

change during development
 XP and DSDM are considered agile
 Non-agile approaches can be viewed as

plan-based

© Bennett, McRobb and Farmer 2005 23

Agile Approaches
Manifesto for Agile Software Development

We are uncovering better ways of developing software
by doing and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more.

The Manifesto for Agile Software Development

© Bennett, McRobb and Farmer 2005 24

Computer Aided Software
Engineering

 CASE tools typically provide a range of
features including:
– checks for syntactic correctness;
– repository support;
– checks for consistency and completeness;
– navigation to linked diagrams;

© Bennett, McRobb and Farmer 2005 25

Computer Aided Software
Engineering

 Features of CASE tools continued
– layering;
– traceability;
– report generation;
– system simulation;
– performance analysis;

– code generation.

© Bennett, McRobb and Farmer 2005 26

Summary

In this lecture you have learned about:
 the stages in the waterfall life cycle;
 about prototyping and incremental life

cycles;
 the importance of project management;
 how users may be involved in a project;
 the role of CASE tools in systems

development.

© Bennett, McRobb and Farmer 2005 27

References

 Hicks (1991)
 Sommerville (1992, 2004) and Pressman

(2004)
 Jacobson, Booch and Rumbaugh (1999)
 Chapters 5 and 21 of Bennett, McRobb and

Farmer include more detail about the Unified
Process

(For full bibliographic details, see Bennett, McRobb and
Farmer)

