
©  Bennett, McRobb and Farmer 2005 1

Avoiding the Problems

Based on Chapter 3 of Bennett, McRobb and 
Farmer: 
Object Oriented Systems Analysis and Design 
Using UML, (3rd Edition), McGraw Hill, 2005.
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In This Lecture You Will Learn:

 the stages in the waterfall life cycle;
 about prototyping and incremental life 

cycles;
 the importance of project management;
 how users may be involved in a project;
 the role of CASE tools in systems 

development.
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Problem Solving Model

 Main phases are
– Data gathering
– Problem redefinition

 These focus on understanding what the problem is about

– Finding ideas
 Concerned with understanding more about the nature of 

the problem and possible solutions

– Finding solutions
– Implementation
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Problem Solving Model
Problem  
definition   
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  Problem  
redefinition   

  Finding  
ideas   

  

Finding  
solutions   

  

Implementation   

General problem solving model (adapted from Hicks, 1991).
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Project Life Cycles

 A distinction should be made between
– Systems development, which incorporates 

human, software and hardware elements
– Software development, which is primarily 

concerned with software systems

 Two important phases are
– Strategic Information Systems Planning
– Business Modelling
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Waterfall Life Cycle

 The traditional life cycle (TLC) for information 
systems development is also known as the 
waterfall life cycle model.
– So called because of the difficulty of returning to 

an earlier phase.

 The model shown here is one of several more 
or less equivalent alternatives.
– Typical deliverables are shown for each phase.
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Traditional Life Cycle
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TLC Deliverables

 Systems Engineering
– High level architectural specification

 Requirements Analysis 
– Requirements specification
– Functional specification
– Acceptance test specifications

Life cycle deliverables (adapted from Sommerville, 1992).
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TLC Deliverables

 Design
– Software architecture specification
– System test specification
– Design specification
– Sub-system test specification
– Unit test specification

Life cycle deliverables (adapted from Sommerville, 1992).
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TLC Deliverables

 Construction
– Program  code

 Testing
– Unit test report
– Sub-system test report
– System test report
– Acceptance test report
– Completed system

Life cycle deliverables (adapted from Sommerville, 1992).
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TLC Deliverables

 Installation
– Installed system

 Maintenance
– Change requests
– Change request report

Life cycle deliverables (adapted from Sommerville, 1992).
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Problems with TLC

 Real projects rarely follow such a simple 
sequential life cycle

 Lapsed time between systems engineering 
and the final installation is long 

 Iterations are almost inevitable in real 
projects but are expensive & problematic with 
the TLC

 Unresponsive to changes during project as 
iteration is difficult
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TLC with Iteration
System       
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The cost of 
this form of 
iteration 
increases as 
the project 
progresses 
making it 
impractical 
and not
effective
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Strengths of TLC

 Tasks in phases may be assigned to 
specialized teams.

 Project progress evaluated at the end of 
each phase.

 Can be used to manage projects with 
high levels of risks.
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Prototyping Life Cycle
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Prototyping – Advantages:

 Early demonstrations of system functionality 
help identify any misunderstandings between 
developer and client

 Client requirements that have been missed 
are identified

 Difficulties in the interface can be identified
 The feasibility and usefulness of the system 

can be tested, even though, by its very 
nature, the prototype is incomplete
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Prototyping – Problems:

 The client may perceive the prototype 
as part of the final system

 The prototype may divert attention 
from functional to solely interface issues

 Prototyping requires significant user 
involvement

 Managing the prototyping life cycle 
requires careful decision making
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Spiral Model & Incremental Development

Progress towards 
final system 
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project planning 
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Unified Software Development Process

 Captures many elements of best practice
 The phases are:

– Inception is concerned with determining the scope
and purpose of the project;

– Elaboration focuses requirements capture and 
determining the structure of the system;

– Construction's main aim is to build the software
system;

– Transition deals with product installation and
rollout.
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User Involvement

 User’s can be involved at various levels
– As part of the development team (DSDM)
– Via a consultative approach
– In fact gathering



©  Bennett, McRobb and Farmer 2005 22

Agile Approaches

 Iterative lightweight approach
 Accepts that user requirements will 

change during development
 XP and DSDM are considered agile
 Non-agile approaches can be viewed as 

plan-based
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Agile Approaches
Manifesto for Agile Software Development

We are uncovering better ways of developing software
by doing and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value 
the items on the left more.

The Manifesto for Agile Software Development
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Computer Aided Software 
Engineering

 CASE tools typically provide a range of 
features including:
– checks for syntactic correctness;
– repository support;
– checks for consistency and completeness;
– navigation to linked diagrams;
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Computer Aided Software 
Engineering

 Features of CASE tools continued
– layering;
– traceability;
– report generation;
– system simulation;
– performance analysis;

– code generation.
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Summary

In this lecture you have learned about:
 the stages in the waterfall life cycle;
 about prototyping and incremental life 

cycles;
 the importance of project management;
 how users may be involved in a project;
 the role of CASE tools in systems 

development.
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